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Abstract—Autonomous vehicles are bound to take over the
urban road scenario in the near future. While fully autonomous
driving is yet to be deployed on urban roads unconditionally,
constrained environments provide an opportunity for preliminary
testing and validation as the technology emerges. Autonomous
robots can be tuned to be robust in constrained environments.
The technologies developed can then be extended and transferred
to unconstrained environments with required safety precautions.
This paper describes the design, development and testing of
EKLAVYA 7.0, an autonomous differential drive robot that
can follow lanes while avoiding stationary obstacles as well as
navigate through a series of land markings specified by GPS
coordinates. It was developed to participate in the 27th Intelligent
Ground Vehicle Competition (IGVC 2019). The paper describes
the overall mechanical, embedded and software architecture
developed for this constrained environment along with system
integration, testing and results.

Index Terms—Autonomous vehicle, Lane detection, Localiza-
tion, Obstacle Detection, Motion Planning

I. INTRODUCTION

The field of autonomous vehicles has seen great develop-
ment in recent years owing to various conferences and compe-
titions being organised. The advent of high computation power
and high fidelity algorithms have been a crucial step towards
accomplishing complex tasks. Starting from the first govern-
ment initiative and encouragement with the DARPA Grand
Challenge, we now have a confluence of government, industry
and academia taking active interest in autonomous driving.
Intelligent Ground Vehicle Competition (IGVC), founded by
The Association for Unmanned Vehicle Systems International
(AUVSI), is one of the leading competitions in this field
where teams have to design and build an autonomous ground
vehicle with the ability to navigate through a constrained
environment and a set of GPS waypoint targets while detecting
and following lanes and avoiding obstacles.

This paper discusses the design and prototyping of
EKLAVYA 7.0, an intelligent ground vehicle built to partic-
ipate in IGVC-2019. The entire system is divided into three
modules that discuss the independent systems of the vehicle.
The first section covers the aspect of design and analysis of
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the mechanical structure covering stability analysis and drive
systems of the vehicle. The structural stability is compared
to that of the design of Eklavya 6.0 [1]. A major part in
development of such vehicles is the embedded interface for
the system that includes modules like power distribution and
battery management. A state of charge estimation technique
as discussed in [2] is implemented for battery management
and monitoring of battery life in the vehicle. The second
section covers the embedded setup of the vehicle including
the circuit design, sensor setup and interface modules for the
deployment of the software stack on a physical system. The
main focus of this competition is to see the development and
implementation of new and efficient algorithms with focus
on mobile robots. The third section presents the software
stack developed for the vehicle that includes sub modules of
localization, planning, perception and simulation. An Extended
Kalman Filter based approach for accurate localization as
discussed in [3] has been used in Eklavya 7.0 that can handle
multiple sensor inputs including wheel encoders, GPS, Inertial
Measurement Unit. Methods of optimal trajectory generation
using elastic band approach as discussed in [4] have been used
for Eklavya 7.0’s planning module. It is assisted with path
optimization in distinctive topology to ensure feasible path
generation as discussed in [5]. The lane detection approach
of Eklavya 7.0 has been optimized with respect to trade-
off between perfomance and computation power. It combines
obstacle removal with thresholding on various sub-spaces to
extract lane features. RANSAC [6], an iterative algorithm
robust to outliers is used for lane model prediction. The last
section discusses the method of system integration and data
handling for the vehicle.

II. HARDWARE

A. Mechanical design

The mechanical structure of the vehicle is designed to
ensure structural stability, supplemented with a light weight
body to allow easy maneuverability on unstructured terrains.
The CAD model of the vehicle is made on Solidworks in order
to simulate and visualize the vehicle in virtual environments
designed for the competition.



Fig. 1: Chassis Frame on SolidWorks

The chassis frame as shown in Fig 1 is carefully designed
to balance all possible stresses faced by the vehicle during
operation. The frame is made of teak wood to impart structural
rigidity to the vehicle body and the top and base of the
vehicle is made of ply for reducing the weight of the vehicle
chassis. The frame is divided into several triangular members
with longitudinal zero force members that provide structural
stability. This design on static structural analysis on ANSYS
(Fig 2) reduced the maximum stress by a factor of 10 in
comparison to our previous design [1]. The camera mount
is attached to the sides of the body of the vehicle to provide
greater surface area of contact and less vibrations.

Fig. 2: Static Structural Analysis of the chassis

B. Drive Mechanism

Eklavya 7.0 has two front pneumatic wheels and a rear
swivel caster with a simple differential drive mechanism with
front wheels driven for maneuvering the vehicle. The pneu-
matic wheels provide high traction on grassy terrain to prevent
slipping and provide accurate wheel odometry information.
It also acts as a form of suspension for the vehicle. The
differential drive mechanism allows simple implementation
and easy maneuverability of the vehicle with the ability to
take zero radius turns [7] about the axis of the driven wheels.

III. EMBEDDED SYSTEM

The embedded architecture links the Software System to the
robot’s hardware by delivering the sensor’s data to the system
and the actuators enact the subsequent changes. The module
also handles the power distribution efficiently, amalgamated
with necessary safety features.

A. Sensors and Actuators

The robot, having differential drive, is mobilized by dual
high torque geared motors with planetary encoders. The
motors are controlled by the Roboteq MDC2230 Motor
Controller. A Global Positioning System (GPS) antenna,
Inertial Measurement Unit (IMU) sensor and a front view
camera are mounted on the chassis to obtain raw data which
is sent to the processing unit for further processing. The
Table I lists the description of the sensors and actuators used
along with their power requirement.

Name Specifications Rated
Power

VectorNav
VN-200

3-axis accelerometer, 3-axis gyroscope, 3-
axis magnetometer, barometric pressure sen-
sor, GPS-aided Inertial Navigation System
(INS), Low power consumption, Accurate sig-
nal output owing to internal Kalman Filtering

1W

HOKUYO
UTM-30LX
LiDAR

Range of 30 m in 270 degree Plane of device,
Millimeter resolution in a 270 arc, Accuracy
50 mm within a range of 0.1-30m

8.4W

BFLY- 23S6
Camera

On-camera image processing: color interpo-
lation, gamma and LUT, 16 MByte frame
buffer, LED status indicator

2.5W

Planetary
Encoder

2 Channel Quadrature Encoder 2000 CPR -

ACTUATOR SPECIFICATION
Geared Mo-
tor

Operating Voltage:- 24V
Current:- Max 30 A, No Load 1.12A
Rated Torque:- 142 Kg-Cm
Gearbox Ratio: 1:6

2X100W

Roboteq
MDC2230
MotorDriver

Built-in high-power drivers for two DC mo-
tors upto 60A output per channel.
Dual Quadrature Encoder inputs with 32-bit
counters.
Up to 6 Digital Inputs for use as Deadman
Switch, LimitSwitch, Emergency stop or user
inputs.

10W

Total - 221.9W

TABLE I: Sensor Specifications

B. Power Distribution and Safety

The circuit board, designed in-house, provides all necessary
operating voltages for each of Eklavya 7.0’s components.
Unregulated 12V flows from one of the batteries to the power
board, which is then converted to regulated 3.3V, 5V and 12V
voltages and sent to the sensors. Two 12V batteries in series
provide unregulated 24V, which is then fed into the motor
controller for powering the motors. The power board can run
the overall system for about 2.5 hours on three 17Ah Pb-acid
batteries. Any surge in the current is protected against by
using fuses of calculated value. The circuit also has reverse
polarity protection to protect the sensors from reverse polarity
being applied accidentally. A wireless receiver Xbee is used
for wireless emergency stop.

C. Battery Management System

An important parameter of the battery is the State-Of-
Charge vs Open-Circuit-Voltage curve of the battery. It is



estimated offline in our case with certain assumptions like
temperature and discharge current invariant. For the estimation
of the SOC-OCV curve, the battery cells were discharged at
constant current. The data points of the current (measured by
a hall effect based current sensor) and voltage were saved
at constant time intervals and a n-degree polynomial is fitted
minimizing the Root Mean Square error (RMSE), where n is
found out empirically. The SOC is then estimated using the
curve and interpolation method [2]

Voc = a0 + a1S
1 + a2S
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IV. SOFTWARE

The Software architecture of the EKLAVYA 7.0 broadly
consists of the Localization, Perception and Planning modules.
Pipelines have been kept parallel so that the failure of an
individual module does not affect the rest of the system.

A. Localization

EKLAVYA 7.0 uses IMU, GPS and planetary encoders for
localization. Their data is passed through an Extended Kalman
Filter (EKF) [3], which is a non-linear version of the Kalman
Filter, in two levels. In the EKF, the state transition and
observation steps don’t need to be linear functions and may
instead be differentiable functions. This algorithm performs
sensor fusion by nonlinear optimal filtering of the uncertain
data, leading to an improvement of over ten fold in the location
accuracy of the vehicle over the data given by a regular GPS
sensor.

B. Trajectory Planning and Controls

Trajectory planning is the task of generating an optimum
path from the current robot position to the waypoint, taking
into consideration vehicle dynamics and obstacles. The plan-
ning module generates this optimal path using a combination
of a Global planner and a Local planner. The Global planner
takes into consideration the global costmap and plans a path
in the global frame. Using this global plan, the local planner
generates an optimal trajectory for the mobile base taking into
consideration dynamic obstacles and vehicle dynamics.

The Controls module kicks in after the optimal trajectory
has been planned. It generates the left and right wheel veloc-
ities and sends these commands to the low level control unit
which controls the motor actuation via a closed loop feedback.
This approach has been elaborated in the following sections.

1) Planner: The planning module consists of a global and
a local planner.

Global Planner: Given a set of waypoints, the Global
Planner interploates between consecutive waypoints to gen-
erate the global path. The sources for these waypoints are
the lane detection module whenever lanes are present and the
GPS navigation module for cases where lanes are absent. The
global obstacle map is taken into account when generating
the global path. The A* heuristic search algorithm is used for

this purpose which guarantees an optimal path in a grid-based
search space.

Local Planner: A local planner is necessary to replan at
short intervals and generate locally traversable paths, espe-
cially in the case of dense obstacles. EKLAVYA 7.0 optimizes
the local trajectory through the use of an elastic band based
approach [4]. An elastic band represents a trajectory that
can be freely deformed in a region free of collisions, while
respecting the kinematic and holonomic constraints of the
robot. We have used an implementation of the Timed-Elastic
Band as the local planner which samples various trajectories
to find the most optimal one [5]. The complex homotopy
invariant is given by

H(T ) =
∫
T F(z)dz

The H-signature of a discrete path (composed of line seg-
ments) is calculated by

H(T ) =
N−1∑
k=1

Hs(Zk, Zk+1)

The H- signature determines the homotopy class of a trajec-
tory, this is used to eliminate all paths except one from each
homotopy class to keep the sampling efficient.The presence of
paths in each homotopy class prevents the planner from being
stuck at a point by developing alternate feasible trajectories.

2) Controls: The high level planner discussed above is
assisted by a high level controller that generates linear and
angular velocity for the tracking of the optimal trajectory
solutions. Over that we use a low level controller to generate
the required RPM for the individual motors. We use a simple
PID controller to ensure closed loop stability for the vehicle.
Use of PID is justified because of the ease of implementation
and the robustness achieved by the controller after proper
tuning of the parameters. The feedback from the motors is
obtained from wheel encoders attached at the base of the
motors. As discussed in [1] the state configuration of the
vehicle can be represented as:

X =
[
x y θ ωl ωr

]
(1)

with x and y being world frame coordinates and theta being
the orientation with respect to the world frame and ωl and
ωr being the rotational speed of the left and right motors
respectively. As discussed in [1] the relation between the
configuration variables are:[

V

θ̇

]
=

[
R/2 R/2
R/2b −R/2b

] [
ωl
ωr

]
(2)

where R is the radius of the wheel and b is the wheelbase.
Using this the robot configuration in the world frame is derived
as: ẋẏ

θ̇

 =

cos θ 0
sin θ 0
0 1

[V
θ̇

]
(3)

C. Perception Module

This module identifies the drivable region for EKLAVYA
7.0. It includes identifying obstacles and lanes and generating



a feasible waypoint as the goal point for the local planner. This
section has been divided into four sub-sections, that presents
our approach towards obstacle detection, lane detection, pot
hole and ramp detection and waypoint generation respectively.

1) Obstacle Detection: The costmap represents the top
view of perceivable region with each point having a cost
based on its probability of being an obstacle or not. A 2D
LiDAR is used to populate the costmap. Since the costmap
is from a bird’s perspective, masking the obstacles in the
camera image requires a perspective transformation to the
front view (camera feed).
This process is, however, not error free; caused due to
false obstacles detection by LiDAR as well as parameter
inaccuracies. Since the problem statement comprises of
only a few kinds of obstacles, like orange obstacles with
white stripes and blue obstacles. These were removed using
standard thresholding techniques on certain combinations of
colour channels and morphological transformations.

2) Lane Detection: Lane Detection has been an open
research problem for a long time. The advantage that we
had was that our problem statement specified that the lanes
would be made on grass. So we exploited this constraint to
solve this problem using simple image processing strategies
and mathematical models. This module can be further divided
into three sections which highlight lane extraction, lane model
estimation and lane classification respectively.

Lane Extraction: As the presence of obstacles and shadows
in the image induces errors in the lane extraction process,
obstacle and shadow removal is done aprior [8] [9] as shown
in 3(a). It was empirically found that lanes were considerably
highlighted in the 2B−G , B and 2B−R channels. A suitable
combination of the channels was taken to create a greyscale
intersection image 3(b). Due to problems like varying lighting
conditions and glare, regions of high intensity emerged which
were removed using a combination of adaptive thresholding
[10] and median blur. To ensure uniformity in the number
of inlier and outlier points for lane model estimation, central
pixel suppression was carried out on 3x3 kernels 3(c).

Lane Model Estimation:
Representing the lanes mathematically serves several impor-
tant purposes. It allows to embed the costmap with continuous
lanes, constrain the waypoint within the lanes and also provide
an orientation for the destination waypoint which is required
by the planner for smoother path planning. First the lanes are
checked to be horizontal straight lines since our choice of
parabolas are unable to fit such lines properly. We use the
Probabilistic Hough Transform algorithm with the conditions
that the slope of the obtained line lies between -20◦ to 20◦,
its number of inliers is greater than a certain threshold and
length of the line is greater than a pre-defined length.

When the above mentioned method fails, lanes are assumed
to be parabolas with the equation, y2 = λ(x − c). Random
Sampling Consensus Algorithm (RANSAC) is used to estimate
λ and c. RANSAC algorithm [6] is based on the property that

the true curve will have the maximum number of inliers (points
that lie on the curve).

Lane Classification: Classifying the lanes as left or right
is trivial when both the lanes are visible.

Difficulty arises in the case of ambiguous single lanes: for
which we use the classification of the previous frame. The
current frame classification is done on the basis of distance to
the previous lanes (centroid to centroid distance).

3) Pot Hole and Ramp Detection: Pot holes and ramps
cannot be detected using a 2D LiDAR, whose detection is
crucial for planning and velocity profile generation. For pot
hole detection, we use the fact that pot holes are circular, thus
applying the following mathematical constraint:

P√
A
= 2πr√

πr2
= 2
√
π(Constant)

The ramp looks like a trapezoid in the front view. For a more
robust detection, the problem can be further simplified to
detect 3 geometrically constrained lines, 1 horizontal and 2
near-vertical, instead of 4. This approach worked well in our
experiments.

4) Way-point Generation: After lane extraction and obsta-
cle detection, we need to generate an optimal goal point for
the local planner. The goal point should be in the center of the
drivable region at optimum distance from obstacles for smooth
traversal and continuity in vehicle motion. An empirical cost
function is defined as γP = αCP + β 1

OP
where CP is the

distance from the lane center and OP is the distance from
the nearest obstacle. This cost is minimized using iterative
sampling from the set of discrete feasible points. For goal
point orientation, the generated optimal point is projected on
the lanes and the lane model derivative is calculated at the
projected point. Lane classification and average lane width are
used to tackle central line estimation in the case of single lane
visibility.

D. Simulation

Testing the planning and perception modules directly on a
mechanical chassis is generally not advisable and can lead
to physical damage. Therefore, an open-source simulation
platform Gazebo was used to simulate and test these modules.
A testing environment was created similar to the IGVC arena,
and was interfaced with the ROS environment. The sensor
noise was modelled as a Gaussian and fused with the sensor
output to make the simulations more realistic. The result was
the creation of a robust simulation environment where a sanity
check and integration of the whole code base was tested.

V. SYSTEM INTEGRATION

Considering the heavy amount of data transfer and concur-
rent data processing involved in robotic applications, Robot
Operating System (ROS) [11] is used for peer-to-peer commu-
nication simplifying the method of data sharing between dif-
ferent modules. The highly efficient protocols used by ROS for
data transfer through nodes and topics handles large amount
of data by parallelly processing high frequency operations.



Fig. 3: Overall processing pipeline from left to right (a) Obstacle detection (b) Pre-processed image after obstacle removal (c)
Grid formation (d) Lane Model Estimation (e) Way point generation

(a) rviz simulation (b) simulation environment

Fig. 4: The simulation setup used

Convenient data abstraction provided by ROS reduces the
hassle of handling data management intricacies associated with
such processes.
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